Fireproofing:
A Market on the Move

Here is a Comprehensive Review of the
Fast Growing, Still Developing Fireproofing Market

In spraying fireproofing there is an additional benefit “K” value which provides desirable insulating protection in an energy-conscious era.

By Joseph C. Mohen
American Energy Products Corp.

The use of fireproofing agents in commercial construction is a comparatively recent innovation which is constantly being improved and revised as our technology improves. During the past few years not only have there been significant changes in the products used but the various criteria utilized to measure performance have become more and more precise.

Fireproofing materials are probably best described as insulators which have been tested as capable of protecting a substratum from fire during a specific length of time.

In this country, among the original criteria for fire protection was the use of concrete. Concrete is not a good insulator, but it had such mass when applied in thicknesses of two inches or more that is was perceived as an ideal protection. More recently, testing has shown that concrete can be almost 20% water when fully hydrated. In intense fires, the boiling off of this water can cause extreme spalling and cracking. In severe conditions, the concrete itself might explode under pressure.

When used in commercial construction, concrete is a common and familiar material which resists damage through its mass and tremendous weight of approximately 150 lbs. per cubic foot.

During the past fifty years, as sprayed mineral fiber and sprayed plaster fireproofing materials were developed concrete has found less use as fireproofing for steel frame buildings.

Sprayed mineral fiber fireproofing is a highly efficient, lightweight fire-protective material. It is incombustible, chemically inert, and an excellent insulation. Most sprayed-mineral fiber fireproofing materials are a mixture of portland cement, inorganic proprietary binders and mineral fibers. This type of material is not mixed in a cement mixer prior to application but pumped dry to a spraying nozzle where water is added to the mixture as it is sprayed onto the surface being insulated.

Also Offers Insulation Value

Sprayed mineral fiber fireproofing is efficient and inexpensive. If sprayed to the underside of steel decks, it will be an excellent insulation since it has a “K” factor of 0.254 which may prove to be quite

(Continued on page 22)
TABLE 1

Estimated Values for Comparative Two Hour Fire Protection for Steel Columns*

<table>
<thead>
<tr>
<th>Product Class</th>
<th>Average* Density lbs./Ft³</th>
<th>Average* Thickness (inches)</th>
<th>Applied* Weight lbs./Ft³</th>
<th>Applied* cost $/Ft²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sprayed Mineral Fiber</td>
<td>13 lbs.</td>
<td>7/8"/2"</td>
<td>1.1 lbs.</td>
<td>.22/$1.00</td>
</tr>
<tr>
<td>Sprayed Plaster</td>
<td>18 lbs.</td>
<td>1/2"/2-1/2"</td>
<td>1.3 lbs.</td>
<td>.25/$1.00</td>
</tr>
<tr>
<td>Intumescents</td>
<td>70 lbs.</td>
<td>1-1/4"</td>
<td>6.0 lbs.</td>
<td>$2.00/$3.00</td>
</tr>
<tr>
<td>Magnesium Oxchlorides</td>
<td>30 lbs.</td>
<td>1-1/4"</td>
<td>3.0 lbs.</td>
<td>$2.00/$3.00</td>
</tr>
<tr>
<td>Concrete</td>
<td>150 lbs.</td>
<td>2"</td>
<td>25.0 lbs.</td>
<td>$4.00/$8.00</td>
</tr>
</tbody>
</table>

*Note: All values are approximate. Consult manufacturer and governing code agencies for specific data. The values given are not intended for estimating or any purpose, other than generalized comparisons.

relevant in the face of our current demand for energy conservation.

The material is not suitable for exterior application, but it can be exposed temporarily with the proper coating.

Sprayed plasters are composed of gypsum-mineral plaster with perlite or vermiculite lightweight aggregates and inorganic proprietary binders. Gypsum-mineral is calcinated to obtain the base material for gypsum plasters. Water is added to the calcinated material during mixing which takes place on site in a cement mixing machine. The wet slurry is then pumped and spray applied. When exposed to a fire, heat is absorbed in removing the water of hydration and absorbed water.

Like sprayed mineral fiber, sprayed plaster is vulnerable when exposed to the weather.

During the past two decades, research has indicated that magnesium oxychloride cements might be used as fireproofing agents. The hydrated water content of magnesium oxychloride cements can exceed 50% and this chemically bound water is released when the cement reaches temperatures as low as 570° F.

Examination of other complex forms of chemical reactions revealed that certain organic compounds could function as intumescent fire protective coatings. (An intumescent coating is one which chars, foams and expands when heated at the proper temperature.)
The initial uses of both magnesium oxychloride cements and intumescent coatings were in areas where its characteristics, i.e., hardness and light weight when compared to concrete, were real assets.

Cost Problems Limits Market

With additional research, many of these products are reported to be suitable for direct exterior exposure. Although they provide many benefits such as good adhesion plus durability and hardness with light weight, their cost has excluded them from many markets.

To date there has not been a complete, direct comparison made by independent test of the various materials currently available for commercial fireproofing work. An accurate analysis would have to include the fire protection properties together with the true cost effectiveness of any given product including equipment costs, plus labor and cleanup costs, as well as additional benefits which improve life-cycle costing such as any thermal insulation and/or acoustical correction values which the material might provide.

An extremely generalized comparison is shown in Table I.

Fireproofing is among the most critical items utilized in the construction of a building. Unfortunately any criteria for evaluating the properties and application of the material which has been installed have been poorly defined when available, with little consistency for any of the various methods suggested.

Application standards and quality control in the field has varied in relation to the degree of inspection demanded. With no uniform criteria, though, it has not always been possible to guarantee that the material actually being applied had the same characteristics including thickness and density as had been tested by the various fire rating approval laboratories.

Recognizing this limitation, the international association of Wall & Ceiling Contractors/Gypsum Dry Wall Contractors International has taken a leadership position through its Technical Committee #4 which recently published a uniform guide entitled, "Inspection Procedure for Field Applied Sprayed Fireproofing Materials". The significance of this work was its combination of the needs of specifiers, code authorities, insurance groups, manufacturers and contractors into one comprehensive standard.

Second Document Now Available

A second document entitled "Design Selection Utilizing Sprayed Fire Protection" has been in preparation for two years and its final draft should be available shortly. This publication will serve as a guide to proper design selection for various construction components including some conditions not specifically clarified in the various Fire Resistance Indices published by Underwriters Laboratories.

In addition to these standards iaWCC/GDCI has made available to its membership and other interested parties, a measuring tool described both by the iaWCC/GDCI standard and ASTM E-605, for use in confirming the applied thickness of either sprayed mineral fiber or sprayed plaster fireproofing. These can be secured by contacting the Washington, D.C. office of iaWCC/GDCI at 1711 Connecticut Avenue NW or calling (202) 667-8400.

Among the further concerns of the iaWCC/GDCI are standards for not only inspecting field applied sprayed fireproofing but also insuring that corrective measures are available and accurate when required.

The major concerns of Technical Committee #4, which also has the responsibility for this project, are field applied density and thickness of sprayed fireproofing.

Both density and thickness are physical characteristics included by both Underwriters Laboratories, Inc. and Underwriters Laboratories of Canada in their fire test reports and Fire Resistance Indices. These two aspects are the

(Continued on page 24)
FIREPROOFING:
(Continued from page 23)
characteristics universally measured by inspectors when certifying field work.

If measurements indicate that applied thickness is less than required, the obvious solution is to add material sufficient to achieve the necessary thickness.

The solution to field application density problems is more complex. Density is more significant within materials of the same product line rather than in comparison of one material to another. As a result, until quite recently no independent criteria was available for inspection agencies to confirm proposed solutions to inadequate material density in the field.

One manufacturer, a member company of Technical Committee #4, has developed with Underwriters Laboratories, Incorporated, a correction formula. The results of this research ‘are being considered by Technical Committee #4 and may become the basis for a new universal standard.

The major on-site problem of fireproofing contractors is neither material or workmanship. Analysis reveals that damage results principally from deliberate abuse by other trades which follow the application of the sprayed fireproofing.

The best solution to this dilemma is a strong contract requiring the general contractor to certify the satisfactory completion of whatever portion of the fireproofing job that has been finished. The general contractor should also be responsible for all subsequent job related damage caused by other trades.

Fireproofing is a necessary and basic requirement in modern construction. If fireproofing materials are to be exposed to the elements or subjected to continuous abuse, a more expensive material manufactured to the specific needs of the installation has probably the lowest life cycle cost. If, as most projects are, the material is to be enclosed and not exposed to weather or abuse, sprayed mineral fiber and sprayed plaster materials probably offer the optimum benefit.

The benefits of each of these materials do not currently answer all the problems of the fireproofing industry. They do however offer consistent improvements in fire protection at lower costs and some combine a variety of benefits more suited to our country’s needs during the energy crisis.