Overcoming the Technical Challenge

AWCI’s Technical Director Discusses Some of the Major Problems Facing Today’s Contractor

These are busy times for Gene Erwin, AWCI’s Technical Director. Not only does he carry the usual administrative workload that one would expect of someone keeping the technical interface between contractor and industry functioning, but he has these other things.

He’s got responsibility for the Foundation of the Wall and Ceiling Industry’s Library, a rapidly expanding addition to the industry’s efforts to do a better job for its participants. He’s a sought-after technical consultant for individuals and organizations needing his experience and expertise.

What it all boils down to is this: AWCI is making a powerful surge to expand its technical services to the industry and Gene Erwin is the individual out on the cutting edge.

Erwin is a journeyman plasterer who has taught apprenticeship courses and obtained a college degree immediately after World War II. He’s also active in numerous technical and professional organizations and served as a consultant to manufacturers of industry products during development and testing and approval stages, organized and operated an eleven-state technical promotional organization.

Technical expertise is at a premium in the wall and ceiling industry. AWCI’s expanded commitment has come with good timing and so has the arrival of Erwin as the industry’s top technical specialist.

Gene Erwin, AWCI’s Technical Director.

DIMENSIONS: Gene, with all this talk of increased complexity and difficulty in the technological arena of the industry, what do you think is the
“It’s one thing to have a fine consensus standard and it’s something else entirely if the people putting in the work don’t know about these standards or—worse—don’t care all that much about conforming to a standard.”

biggest technical problem faced by today’s contractor?

ERWIN: The biggest problem is not technology per se, it’s communications: the inability of people in this industry to communicate clearly with each other, the technical standards, regulations, and recommendations that various parts of the industry develop.

DIMENSIONS: Communicate with whom?

ERWIN: The standards ultimately have to be communicated to, and understood by, the workmen responsible for erecting the work. It’s one thing to have a consensus standard and it’s something else entirely if the people putting in the work don’t know about these standards or, worse, don’t care all that much about conforming to a standard.

DIMENSIONS: Your phrase “consensus standard” is a favorite of standard-forming organizations. They’ve been criticized, haven’t they, for being rather extensive, time-consuming approaches when industry needs quicker answers?

ERWIN: It takes time, yes, to create a consensus standard; and for the most part, that is necessary in order to achieve a true consensus document. Your standard-creating groups, like American National Standards Institute (ANSI) and the American Society for Testing and Materials (ASTM), are strictly umbrella organizations under which interested people can gather together and eventually agree upon a standard. The function of the umbrella organization is to make certain that the document finally produced represents the broadest possible consensus (agreement) among all interest groups.

The way this is done contributes greatly to the time problem. A task group or an individual creates a draft document. When the task group feels they’ve done the best they can, they submit the draft to subcommittee for ballot votes until consensus is achieved. At this point the document is submitted to main committee by letter ballot and when this is accomplished, the draft moves to “Society” level for ballot, which means that every member of ASTM has the opportunity to vote.

when all of this process has been completed, the draft document becomes an approved standard and is published for use.

DIMENSIONS: A rather long time, won’t you admit? Is it worth it?

ERWIN: Yes, it takes time. But it prevents one interest group from developing a proprietary document under the guise of an industry standard. If you accept that building structures are intended to perform for some length of time and that the ultimate owner or user is entitled to his money’s worth, it probably isn’t such a long time.

DIMENSIONS: What is the current status of asbestos abatement? The seminar programs sponsored by the Foundation of the Wall and Ceiling Industry, frankly, didn’t elicit all that much response and attendance, did they?

ERWIN: There is a greater interest in asbestos abatement in Canada than
ERWIN From page 9

in the U.S. at this time and there are several probable reasons for this. Canada is a major producer of asbestos and is more conscious of asbestos related matters. Canada, without legislation, has enforced regulations prepared by governmental agencies. The U.S., with legislation, does less enforcement of the requirements. Finally, the Reagan administration is being perceived—incorrectly, I think—as removing the “heat” from the enforcement of abatement efforts.

AWCI is making a full commitment to bringing a more appropriate technical response and Erwin’s task is to make this commitment as comprehensive as possible.

There is no question that asbestos abatement is a nasty business where employees must work in isolated areas, shut off from heat, ventilation, and normal work clothing, but if the wall and ceiling contractors choose not to move into this market, you can be certain that someone else will. Vacuums have a way of not lasting too long—and another extensive market can be lost.

DIMENSIONS: When asbestos-containing products were initially installed, they were good products. Now they are “baddies”. How can contractors protect themselves against this kind of thing?
ERWIN: The courts still are debating this. There is no absolute protection against the future and what it holds.

Many times contractors buy products relying solely on the representations of the manufacturer of that product. Before buying a product, a contractor should determine whether or not a material specification exists for that type of product and he should insist that the product meets the requirements of the specification.

DIMENSIONS: How can that be done?
ERWIN: Check the manufacturer’s literature, the architect’s specifications, or pick up the telephone or write to the AWCI Technical Department or the Foundation Library. Another option is for the contractor to buy an Index of Standards from ASTM or another umbrella organization or government agency. The main point is that a contractor must know as much as possible about his work including the technical details.

DIMENSIONS: Gene, how about this old bugaboo of the all-conclusive question? You know, the kind where you really don’t know what the question is even about?
ERWIN: They’re the bane of my existence, the “tell-me-all-I-have-to-know” type of question. If you query the AWCI Technical Department, it helps both you and us if you are specific. I like a question where the contractor or architect says, “What type of product is recommended for these specific conditions (climate, job sequence, surface, substrate, type of occupancy, season, etc.)?

Stucco application is a good example. The application of stucco in Death Valley, where there’s no significant humidity problem, versus Miami, where there is a problem, represents two distinct questions, not one.

DIMENSIONS: Running a modern wall and ceiling business is a time-consuming task. How—with all the other problems—does a contractor stay current technically?
ERWIN: It’s a big problem, I know. But it simply must be done. You must make an effort to obtain the proper technical literature and you must read it, including the fine print. You must talk to other contractors; you must exchange experiences with a wide range of like contractors.

The comments just mentioned could sound almost like a commercial for joining AWCI. It is the most powerful reason I can think of for joining an association where you have
“... (to stay technically current) ... you must read ... make an effort to obtain the proper literature ... talk to other contractors ... exchange experiences ... talk to a wide range of technically proficient people ... join AWCI, that’s the best way ...”

greater opportunity to talk and to exchange ideas with like contractors.

DIMENSIONS: Let’s get back to communications as a problem. AWCI has all kinds of communications media and you spend a lot of time speaking to groups and lecturing at seminars and the like. Isn’t this getting the message through?

ERWIN: I always worry that we’re not addressing the right people. It’s one thing for the contractor to know—and he had better know!—but his employees must know too. I don’t care which way information trickles, down or up, but there should be a steady stream drenching everyone so they understand why and how.

DIMENSIONS: In a nutshell, what’s a good procedure for a contractor to follow?

ERWIN: For a specific assembly, determine if generic material specification and application standards exist, and compare these to the manufacturer’s specifications. I say this because it is the rare instance where the contractor in the field can exactly duplicate a tested assembly built under laboratory conditions.

You see, when a contractor erects an assembly that contains one or more products for which a specification doesn’t exist, that contractor could be building himself a potential time bomb. If the system fails and someone can prove a material didn’t conform with an existing applicable specification, the contractor could very well be held fully responsible for the failure. He can look in vain for someone to bail him out at that late stage.

DIMENSIONS: The difficulties that you have been mentioning certainly haven’t been missed by the architects, the engineers, and the designers. Nor has the liability problem. Is this what’s prompting the so-called “performance specification”?

ERWIN: The “performance” concept is an ideal concept, no question about that. The owner, designer, or specification writer, under this concept, doesn’t care what you build it
out of, just so it works to his satisfac-
tion. Although it sounds wonderful, it is a very difficult thing to accom-
plish.

The difficulty with a performance spec lies in the fact that a consensus on what is adequate performance does not always exist. At what point is tightness proper? Look at ureafor-
maldehyde: It’s a good insulation product, but the heavily publicized side effects . . . sickness, nausea, perhaps even deadly to some . . . were just too much.

All things considered, performance is difficult to write—although it sounds just wonderful. And the only acceptable alternative is a prescription spec—precisely what we have.

DIMENSIONS: Then why is the archi-

cet writing performance specs?

ERWIN: They want you to provide the responsibility for the assembly and then—after the fact—they A/E can commend and amend. That’s where the contractor begins losing. Then, too, say you bid a true 2-hour as-

sembly and your competitor comes in with a cheaper design which isn’t a 2-hour assembly and the A/E doesn’t know the difference . . .

DIMENSIONS: There just doesn’t seem to be the final answer of specifications, standards, or even tolerances, does there?

ERWIN: No, but that’s only because we’re in a dynamic industry and each new breakthrough brings in a host of related and connected challenges.

Look at gloss paint over drywall. It’s now being proposed that the entire surface of drywall be covered with joint compound where gloss paint is to be applied to prevent the seams joint telegraphing.

Can you imagine a better demon-

stration of overkill?

DIMENSIONS: How about toler-

ances? They’re always good for a heated discussion?

ERWIN: And for good reason, too. A wall and ceiling contractor—the kind of contractor who covers up or fixes up the previous contractor’s work—faces two kinds of tolerances: his own and that of the contractor before him.

For example, if the previous work by other trades or contractors was haphazard (say, poor alignment of the cutouts on shaft wall openings) can
you see how much correction the shaft wall contractor faces?

Not only does the contractor doing the shaft wall have to correct the problem to avoid having a zig zag wall, but he must be careful that his own finishing work is smooth and within reasonable tolerances.

DIMENSIONS: Yet you say no universally acceptable tolerance exists?

ERWIN: That’s right—and that’s a dilemma. What is the minimum accepted tolerance for a straight wall? A quarter inch or ten feet? If that’s the standard, O.K., but right now there is no published, accepted tolerance.

Here at AWCI we’re working on that problem. The late John Thomson was a demon about the need for tolerance standards, for a standard to measure good workmanship. And Thomson was right. We should provide tolerances for our own trades.

If we had our own published tolerances, the contractors could wave these before the A/E and say we won’t apply our finish coating until the wall has been brought under reasonable, acceptable tolerances. We could put some heat on the previous contractor to be more careful and not depend so much on the wall and ceiling contractor to cover up shoddy work.

DIMENSIONS: Why are not all wall and ceiling contractors leaping on the bandwagon of tolerance then?

ERWIN: We do get some support from our contractors. But many are hesitant because they fear that a published tolerance standard can be used to hang them if their work doesn’t meet the standard.

A good standard obligates a contractor to do acceptable work and if the tolerances are realistic there should be no basis for this kind of fear.

DIMENSIONS: Gene, what are some primary services that AWCI’s Technical Department can provide its members?

ERWIN: The best answer would have to be research and referral services. We’re hard at work here on the Foundation Library getting the data that we can provide to contractors. The library is coming along but at a deliberate speed for purposes of accuracy and completeness.

We now have a professional librarian working there putting things into order, cataloging, and so forth. Next step is to tie this into the AWCI computer and to get as much material as possible onto microfiche.

In those instances where we don’t have the data, we try to know where they’re located and we can refer.

We are an association of contractors—not engineers. We are the ones who build the specifications.

It’s tough enough just being a good contractor—without taking on the other fellow’s problems.