Contractor combines hard-coat and thin coat along with color matching in retrofit of bottling plant and garage into single building.

The one-story, 52,000 square feet retrofit, combining Pepsi Cola’s former bottling plant and adjacent garage, integrates Senergy’s hardcoat, impact resistant wall system with its thin-coat, more flexible EIFS.

Plasterers leveled the logo itself and the bottom edge of each stripe, cutting at a 30-degree angle to allow for water runoff.
A recent EIFS retrofit at Pepsi-Cola’s regional bottling headquarters in Rochester, Minnesota, combined the extreme durability of a polymer-modified exterior wall assembly with the flexibility of a polymer-based thin-coat system to create unique custom design details.

The retrofit, performed by Superior Contractors, Inc., involved two adjacent buildings—a 1950s-vintage bottling plant and a former bus garage, now converted to offices. A new addition houses a conference room and main entrance that connects the two existing structures to create one 52,-square-foot building.

Both one-story structures had undergone several previous renovations, resulting in many different roof lines (ranging from 16 to 22 feet high), numerous punched windows and bay doors, and an exterior that included white-painted concrete block, face brick, and some stucco.

The owners asked architect Jim Springborg of Architectural Design Group to unify the rehabilitated structure with a distinctive, innovative design, selecting attractive, yet rugged materials that would stand up to the wear and tear of a high-traffic, commercial neighborhood.

Springborg’s solution called for construction of the new conference-room link, the addition of a false parapet to balance the roof lines, the filling-in of many windows and doors, and the use of both hard-coat SENERTHIK™ and thin-coat SENERFLEX™ exterior insulating systems, manufactured by Senergy Inc. of Cranston, Rhode Island, to unify the entire project.

systems offer Flexibility, Durability

Superior applied the hardcoat system’s two-inch-thick extruded polystyrene insulation board to create a mechanically fastened, energyefficient envelope for the building. The flexible foam shapes allowed Superior to craft a 20-foot, contoured replica of the Pepsi logo and incorporate it, along with other custom details, into the EIFS design.

“They just handed us a Pepsi can and asked us to reproduce the red, blue and silver/gray logo near the roof line above the main entrance,” says Bob Eide, vice president of Superior Contractors. “Just matching the colors was a challenge, but Senergy stuck with it, and after a few tries they managed to duplicate the shiny surface of an aluminum can.”

Extending from the logo are three red and three blue stripes, each six inches wide. Each stripe is a hand-built reveal, one inch deep, encircling the top of the building. Using specially fabricated tools, Superior’s plasterers beveled the logo itself and the bottom edge of each stripe, cutting at a 30-degree angle to allow for proper water run-off.

“Custom details like the logo and the reveals can be prefabricated by the foam manufacturer, but we prefer doing it ourselves on-site, where we can adapt the system to the irregularities of the building,” says Eide.

At the roof line, they tapered the hardcoat system to fit beneath existing metal flashing and reinforced the seam with new flashing on top of the old.

“This technique saves money because we don’t have to remove the old flashing, and the chances for leaks are much less,” says Eide.
Superior adapted the EIFS system to allow for the future growth of the bottling plant.

Spray-on Finish
Gives Custom Look

Superior opted for a spray-on application of the finish coat to achieve the ultra-smooth finish desired by the owners of the building.

“Spraying nearly always requires a background coat and a surface coat to cover irregularities,” says Eide. “We had to spray the logo four times-red and blue first, then the silver/gray to get it just right.”

To maintain that uniform look, control joints were sprayed over with finish coat, then lightly scored with a trowel so that only a pencil-thin line is visible and the caulking material undisturbed. In this way, the joints remain unobtrusive, while still remaining watertight and allowing for the slight expansion and contraction of the foam panels.

According to Eide, spraying uses about 50 percent more material, but requires less labor. “It’s pretty much a wash in terms of costs, but spraying does require skill and experience,” he says.

He also points out that all materials and workmanship on the Pepsi job are covered by Senergy’s 5-year warranty, a major factor in the selection of the EIFS supplier for the job.

Adapting EIFS for Future Expansion

Superior adapted the EIFS system to allow for the future growth of the bottling plant, substituting metal siding on the back side of the building where a future addition is planned.

Many unused bay doors were filled in with concrete block and covered over with the hard coat, but Pepsi wanted to keep those doors accessible for possible future use. Superior filled and covered the 14x14-foot door openings, running two zinc j-beads back-to-back around the doors’ perimeters and caulking the resulting 1/4-inch joints. In the future, Pepsi will be able to knock out the panels covering those doors without destroying the entire wall.

“All of these custom details take more time,” says Eide, “but more and more architects are taking advantage of the flexibility of EIFS systems to incorporate unusual details into their designs. And the systems themselves are becoming more versatile so that we can meet some of the more exacting expectations of owners and developers while retaining confidence in the quality of our work.”