Win, Place, or Show
For a $90 million Oklahoma race track, it was polymer-modified exterior insulation at the finish.

The new Remington Park race track in Oklahoma City, OK, is a $90 million complex designed with pageantry in mind. Both paddock and track are visible from the grandstand, so spectators can follow horses and jockeys from the clubhouse to the finish line.

"Because everything is visible to the public, we wanted our materials to be both attractive and durable," says Dick Voorhees, construction manager for the Edward J. DiBartolo Corp. of Youngstown, PA, which owns the facility. "We needed first-class workmanship for every part of this project."

For the exterior walls of the grandstand, paddock area, and tote board, Voorhees selected the exterior insulating finish systems (EIFS) from Senergy Inc. of Cranston, RI.

The entire project called for 133,000 square feet of EIFS, applied by two different contractors, who had to complete the job in just a few months-despite several "hundred-year" rains that fell in the interim.

Nemecek Interior Construction was selected as plaster and metal lath contractor for the grandstand. Built as a poured concrete structure with steel stud curtain wall, the grandstand required 109,000 square feet of EIFS in all. For the paddock areas, tote boards and matrix boards, the EIFS applicator was L.B. Moss Plastering.

Says Mark Rose, project manager for Nemecek, "We took our cue from the owner and went the quality route in our bidding—everything world-class with no corner cutting. But we were able to cut 10 to 15 percent off the costs by specifying the impact resistant, polymer-modified ‘Senerthik’ for the first story—and the more versatile, polymer-based ‘Senerflex’ for everything else."

Rose organized the work with a core crew of 40 plasterers and laborers, increasing to 80 at the height of the job. Separate crews attached the metal framing and gypsum sheathing, put up EPS foam insulation and mesh, and applied the base and finish coats. "Giving people tasks to match their talents proved very cost-effective," Rose says.

A local labor shortage led Nemecek to recruit additional help from nearby Dallas. "We used this project as a training ground," says Rose, "teaming new people with experienced people and feeding them the work at bit at a time. The EIFS application process..."
The 300-acre Remington Park facility features a six-level grandstand for 20,000 spectators, paddocks and barns for 1,200 horses, plus tote boards and video screens—all of which required EIFS installations.

is fairly easy to learn, so it makes sense to use a large project to train people.”

Laborers built scaffolding for the 110-foot grandstand, moving and constructing as many as 1,000 frames at one time. For the top stories, a cantilevered platform was used to lower crews over the top edge of the building, saving the time and labor of scaffold-building.

On the track side of the grandstand, where EIFS was applied around large expanses of glass, Nemecek borrowed specialized scaffolding from the glass installers. “They had massive motorized swing stages,” recalls Rose. “Getting used to them slowed us down a bit, but it was easier than erecting our own scaffolding over all that glass. We put in quite a few six-day weeks to get the job done.”

Remington Park was Nemecek’s first experience with the polymer-modified EIFS system. “The thick system takes more plastering skill than polymer-based products,” says Rose. “We found smoothing the surface with a plastering rod, and skimcoating the base coat to fill out the voids and imperfections, produced a truer and flatter wall.”

The biggest problem on the job, according to Rose, was scheduling around other trades working at the same time.

“To meet the opening deadline, we had roofers, glaziers and plasterers all working at once. Whoever got to a section first would go ahead and let the others work around him.”

L.B. Moss handled the EIFS application in the paddock area. For the wood-lined saddling stalls, crews installed ½-inch EPS foam board under the wood slats to a height of eight to 12 feet—bringing the foam flush with the wood above that height, and finishing the high areas with base and finish coats.

More than 50 percent of Moss’s business is now EIFS, but the Remington Park project presented some unusual challenges. According to project manager Gerald Forsyth, “we were accustomed to using adhesive fastening for a polymer-based system. But in this case, mechanical attachments were needed for the lower, polymer-modified portion. An air-driven step-down pin was used to make the attachment through varying thicknesses of foam. We had to be very careful in planning the pattern and sequence of attachments to be sure the anchors were properly embedded in the concrete block below.

“It takes several jobs to become thoroughly familiar with the EIFS material. You have to know the fine points, but also envision the entire job before you start to price it correctly. For example, labor costs vary depending on which step in the application process you’re costing out. The finish coat is the least labor-intensive, and the foam application requires the most labor.”

DiBartolo’s Voorhees sums up the project: “The most important characteristics we looked for in contractors were experience and the ability to start, finish, and man the job properly. We wanted suppliers who would go the extra mile for us. Senergy, for example, supplied about 30 color samples before we settled on the colors and textures we wanted.

“Everyone knew the tight schedule would require an unusual degree of cooperation, with all the contractors working around and with one another. This was a complex job, but we let everyone know from the start we were after top quality, and that’s what they gave us.”