Were doing an EIFS job, and the inspector is requiring that we install metal sill flashing in all the window openings. Is this necessary? —via e-mail

ASTM C-1397 recommends the use of metal sill flashing in section X1.2.6 of the appendix. (I use the term “recommends” because the appendices of ASTM standards are non-mandatory.) Many of the alleged moisture intrusion problems with EIFS—and virtually any cladding system—can be traced to moisture entering the wall cavity through a window opening. There are several ways unwanted moisture finds its way in to the wall cavity via the window opening. Sometimes the windows themselves leak, sometimes the windows are not installed correctly, and sometimes the sealant around the window is improperly installed, aged and failing, or just plain not there.

In our recently published AWCI EIFS Forensics Inspection Protocol Manual, it is pointed out that “proper flashing is a requisite in preventing moisture intrusion in any exterior cladding system.” One scenario explains that window flashing must be properly installed for the following reason: “Security systems installations routinely penetrate the sill assembly of window units for installation of detection devices. Upon penetrating the sill assembly for the installation of these monitoring devices, moisture intended to be evacuated or restricted via this assembly cannot be introduced into the wall assembly unless proper flashing has been installed.” So, during the development of the above-mentioned ASTM standard, it was the consensus of the group that the metal sill flashing was the best bet for preventing the problem.

Again, this problem is by no means limited to EIFS. The Northwest Wall and Ceiling Bureau has a technical bulletin addressing virtually the same problem with stucco, where the flashing is a bit more complicated because there are a couple layers of the weather-resistant barrier that must be correctly lapped over and under the flashing to ensure that unwanted moisture is correctly diverted out of the wall. Several of the newer water managed EIF systems have similar details as well.

We’re trying to touch up a “popcorn” textured ceiling after some repairs. We’re using the original material, but having a really tough time getting the patches to blend in. Any advice? —via e-mail

This can be a real challenge if the original texture job was not applied to the fullest density because the original applicator stretched the material. What happens when you touch up an area that is “hungry” for more texture is that in the areas where the material from the patch overlaps into the original material, you now have double density—even though you may achieve the same density as the original area on the patch itself. Once you’ve gone this far, you only have a couple of options: Continue to texture the ceiling until you have achieved maximum density of the texture material over the entire area, or scrape off the patches and be more mindful of the overlapping areas.

In a recent column I answered a question regarding the cracking of joint compound along the edges of the joint tape. I shortly thereafter received a white paper from the Drywall Finishing Council titled “Centerline Ceiling Cracking and Crowning On Drywall,” by Michael D Jundt, S. E.. We ran the text of this paper in its entirety in the January issue, but the gist of it is that the crowning and cracking of wallboard joint on ceilings is primarily due to fluctuations in humidity, which causes swelling and shrinking of the wood framing. As the framing shrinks and swells, the wallboard joints are stressed by either being pulled apart or compressed. Cracking at the joints eventually results.

About the Author
Lee G. Jones is AWCI’s director of technical services (jones@awci.org).